

)	Introduction
)	Current Energy Sector Situation
)	Major Issues
)	Renewable energy resources potential
)	Modelling Framework: MAED & MARKAL
)	Future Energy Scenario Analysis
)	Major Policy Recommendations &
	conclusion

Per Capita Primary Energy Supply in 2007

Per Capita Electricity Consumption in 2007

Brief Introduction on Nepal						
 Population Per capita GDP Area Length 	28.11 million US\$ 246 147,000 sq km 880 km (East- West)					
Breadth	145 to 241 km (North –South)					

Key World Energy Statistics, IEA, 2009

Monthly household life cycle costs of cooking different fuels (based on D'sa and Murthy, 2004)								
	Year	Kerosene		.PG	Electri	city		
	1997	180		465		605		
	2000	385		405		680		
	2003	410		510		788		
	2009*	912		794		788		
	Economic cost	862		853				
_	* At price adjustm	nent in March 2009 (NOC,	, 2009) <mark>.</mark>	US\$ 1 =	NR 73.00			
icit	y price at NR7.30/unit	Current LPG Pri	ice: loss d	of NR 87/cyl (Sept. 2009)	17		

Sales of petro-products in 2009

Petro-products	Sales in KL/MT	% growth from 2008
Gasoline	124,169	22%
Diesel	446,468	46%
LPG MT	115,813	24%
Kerosene	70,089	-65%
Total petro- products	828,022	14%
		Source: NOC, 2009

	Expected demand in 2010 GWh	Sales in 2009 GWh	Deficit in %
Expected demand/ sales	4,018	2,309	43%

Consu unsust	mption of traditional fuels - ainable
Depen Depen	dence on imported petroleum cts – too much
Harne: hydrop	ssing of the indigenous bower resources – very poor
Fuel si	ubstitution - strongly needed

Energy Resources Potential

energy sources	potential MW/MWa	Economical potential MW/MWa	Utilized MW/units	% of utilization
Hydropower	83,000	42,000	688	1.6
Microhydro	50		10.2	20
Solar PV power plant	9,750			0
Solar PV home system	122		3.2	3
Wind Power	1,215			0
Biogas plant (MWa)	864		60	7
Solar water heating Urban (MWa)	82		23	28

Methodology

Useful Energy Demand Projection using Model for Analysis of Energy Demand (MAED) developed by International Atomic Energy Agency (IAEA), Vienna, Austria.
Energy Supply System Analysis using ASWER MARKAL developed by Energy Technology Systems Analysis Programme (ETSAP), International Energy Agency (IEA), Paris, France.

23

2/6/2010

Methodology

- □ Participatory workshops for issues identification
- Collection of data from WECS, CBS, MOF, MOF&SC, NPC, NEA, NOC, World Bank, ADB, UN, ESMAP etc.
- □ Analysis/Time horizon : from 2005 to 2030
- Macroeconomic indicators
 - GDP growth rate 4.3 percent (average)
 - GDP growth rate 5.5 percent
 - GDP growth rate 7.0 percent
- Demographic parameter population growth rate: medium variant growth rate (leading from 2.23 percent to 1.74 percent in 2020 and onwards; CBS, 2003)

26

Future Energy Scenario

Scenarios (Policy Interventions at Reference Case)

Introduction of Clean Energy Technology at Reference Case

 Traditional fuels and fossil fuels replaced by electricity and/or fossil fuels.

Sub-sector	2020	2030				
Industrial and commercial	Traditional and fossil fuels decreased by 20%	*Decreased 30%				
Residential Urban	Fuelwood share decreased by 50%	*Decreased by 75%				
Residential Rural	Fuelwood share decreased by 10%	*Decreased by 30%				
*replaced by electricity, kerosene & LPG						

Scenarios - Policy Interventions at Reference Case

CFL Penetration

Incandescent bulbs replaced by CFLs at the rate of 50 percent in 2020 and then linearly to 100 percent in 2030 industrial, commercial and residential sectors.
 Transmission and distribution losses of electricity grid reduced from 25 percent in base year to 20 percent in 2015, and then linearly to 10 percent in 2030

*replaced by electricity, kerosene & LPG

29

Scenarios - Policy interventions at reference case

Introduction of New Transportation Technology :

- Ethanol and bio-diesel mixing in petrol and diesel respectively. Ethanol mix 10 percent 2020 onwards and 20 percent in 2030. Bio-diesel mix 5 percent 2020 onwards and 10 percent in 2030, and
- Electric and hybrid cars introduced. Diesel and petrol cars to be reduced by 10 percent of reference case in 2020, 20 percent in 2025, and 30 percent in 2030.
- Electric cars will be substituting at the rate of 5 percent in 2020, 10 percent in 2025, and 15 percent in 2030.

30

 Hybrid cars will be substituting the remaining as 5 percent in 2020, 10 percent in 2025, 15 percent in 2030.

Scenarios - Policy interventions at reference case

- □ All combined policy measures:
 - All combined policy measures plus wind power plant and solar water heating system introduced.

Sustainable Energy Indicators in Reference Case Scenario

Indicators	Units	2005	2010	2015	2020	2025	2030
Final energy consumption/capita	GJ/capita	15	16	18	21	25	30
Electricity consumption/capita	kWh/capita	67	87	123	183	297	423
Energy Intensity	GJ/1000\$	54	51	48	46	45	46
Electricty intensity	kWh/1000\$	247	275	327	406	546	641
Electricity power utilized	per cent	1%	3%	4%	7%	11%	18%
Total Energy Consumption/ value added in industrial sector	GJ/1000\$ value added	23.7	23.9	26.7	31.0	38.4	43.9
commercial energy / value added	GJ/ Bill Nrs	29,701	41,858	59,502	85,059	121,904	174,837
Total Energy Used/household	GJ/HH	76.1	81.6	87.6	95.8	107.2	123.
Electricity used/HH	kWh/HH	177	261	372	536	774	1,115
Transport Energy Utilization	GJ/M T-km	1.3	1.9	1.9	1.9	2.0	2.0
Transport Energy Utilization	GJ/M P-km	0.4	0.5	0.5	0.5	0.5	0.
primary supply	per cent	1.7%	1.99%	2.52%	3.29%	4.52%	5.27%
Share of renewable energy in final total energy consumption	per cent	2%	3%	3%	4%	6%	6%
the ratio of net import to total primary energy supply	per cent	10%	12%	15%	18%	21%	25%
GHG emission for every ton of energy production and use	GHG in Kg/capita	806	895	1,006	1,157	1,376	1,690

USD 1.00 = NR 73.00

Sustainable Energy indicators for combined case

Energy Indicators	Units	2005	2010	2015	2020	2025	2030
Final energy consumption/capita	GJ/capita	15	16	16	17	18	21
Electricity consumption per capita	kWh/capita	67	99	158	282	533	882
Energy Intensity	GJ/1000\$	54	49	43	38	34	31
Electricity Intensity	kWh/1000\$	249	313	444	663	1,026	1,382
Electricity power utilized	per cent	1%	2%	4%	7%	13%	23%
Total Energy Consumption/ value	GJ/1000\$ value						
added in industrial sector	added	24	24	26	30	36	41
commercial energy / value added	GJ/ Bill Nrs	29,701	41,153	54,388	72,285	98,539	134,756
Total Energy Used/household	GJ/HH	76	79	77	76	74	75
Electricity used per HH	kWh/HH	177	261	475	853	1,549	2,552
Transport Energy Utilization	GJ/M T-km	1	2	2	2	2	2
Transport Energy Utilization	GJ/M P-km	0.4	0.5	0.5	0.4	0.4	0.4
share of non-carbon energy in primary supply	per cent	1.7%	2.3%	3.7%	6.3%	11.0%	15.9%
Share of modern renewable energy in final							
total energy consumption	per cent	2%	3%	5%	8%	14%	19%
the ratio of net import to total							
primary energy supply	per cent	10%	12%	16%	20%	25%	31%
GHG emission for every ton of							
energy production and use	GHG in Kg/capita	806	859	894	936	977	1,069

Per Capita Electricity Consumption in 2007

Total undiscounted supply investments

Major Policy recommendations & conclusion

- □ Discourage use of fossil fuels
- Prioritize indigenous hydropower as lead energy resources
- Promote energy efficiency program
- Emphasize on renewable energy technology
- Deregulate energy sector
- Regional cooperation with SA countries
- Further improvement/development of MARKAL model and MARKAL-MACRO

49

Thank you !